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Abstract

Heat transfer and entropy generation analysis of the thermally developing forced convection in a porous-saturated duct of rectangular
cross-section, with walls maintained at a constant and uniform heat flux, is investigated based on the Brinkman flow model. The classical
Galerkin method is used to obtain the fully developed velocity distribution. To solve the thermal energy equation, with the effects of
viscous dissipation being included, the extended weighted residuals method (EWRM) is applied. The local (three-dimensional) temper-
ature field is solved by utilizing the Green’s function solution based on the EWRM where symbolic algebra is being used for convenience
in presentation. Following the computation of the temperature field, expressions are presented for the local Nusselt number and the bulk
temperature as a function of the dimensionless longitudinal coordinate, the aspect ratio, the Darcy number, the viscosity ratio, and the
Brinkman number. With the velocity and temperature field being determined, the second law (of thermodynamics) aspect of the problem
is also investigated. Approximate closed form solutions are also presented for two limiting cases of MDa values. It is observed that
decreasing the aspect ratio and MDa values increases the entropy generation rate.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Designed porous media, which are of current practical
importance, are usually associated with such high perme-
ability and porosity that the Darcy flow model is not appli-
cable while the Brinkman flow model can predict
hydraulics through such hyperporous media as noted by
Nield and Bejan [1]. Flow through pores, in a microscopic
scale, is inherently irreversible and a part of the mechanical
power is dissipated to heat as a result of viscous dissipa-
tion. Consequently, this effect at the pore level is accounted
0017-9310/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijheatmasstransfer.2007.02.036

* Corresponding author. Tel.: +61 (7) 33653668; fax: +61 (7) 33654799.
E-mail address: k.hooman@uq.edu.au (K. Hooman).
for in macroscopic scale by retaining a viscous dissipation
term in the thermal energy equation where the term is pro-
portional to the volume-averaged velocity square as first
noted by Ene and Sanchez-Palencia [2] for cases where
the Darcy flow model is valid. On the other hand, as noted
above, there are numerous cases of practical importance,
where non-Darcy effects are significant and one should
model the pore level dissipation in terms of appropriate
properties (of fluid and solid matrix). However, for such
cases one is left with two alternatives for the viscous dissi-
pation function as proposed by Nield [3] and Al-Hadhrami
et al. [4]. Recently, Breugem and Rees [5] have reported a
volume averaging procedure to come up with a general
model for viscous dissipation that seems to be applicable
for a Brinkman–Brinkman problem. The term ‘Brink-
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Nomenclature

A area, m2

A matrix
a, b duct dimensions, see Fig. 1
aij elements of matrix A

B matrix
Bm coefficients
Br Brinkman number, leU

2/(qwa)
bij elements of matrix B
�b aspect ratio, �b ¼ b=a
C duct contour, m
cp specific heat, J/kg K
D matrix
Da Darcy number, K/a2

Dh hydraulic diameter 4A/C, m
dmj elements of matrix D

E matrix with elements eij

eij elements of matrix E

F pumping power to enthalpy change ratio,
F = P*/(qcpT*)

fi, fj basis functions
G Green’s function
h heat transfer coefficient, W/m2 K
�h average heat transfer coefficient, W/m2 K
i, j indices
K permeability, m2

ke effective thermal conductivity, W/m K
L duct length, mbL dimensionless duct length, L/(aPe)
M le/l
m, n indices
_m mass flow rate, kg/s
N matrix dimension
N* dimensionless pressure drop, N* = P*/(lU/K)
Ns dimensionless entropy generation rate,

_Sgen=ð _mcpÞ
Nu Nusselt number, ha/ke

NuD Nusselt number, hDh/ke

Nu* Nusselt number without viscous dissipation
P matrix having elements pmi

P* �oP*/ox, Pa/m
Pe Péclet number, qcpaU/ke

P pressure, Pa
pmi elements of matrix P
q* dimensionless wall heat flux, q* = qwa/(keTi).
ReD Reynolds number, qUDh/le

s entropy, J/kg K
S volumetric heat source, W/m3

S* see Eq. (23b)
_Sgen cross-sectional average of the entropy genera-

tion rate, W/K
T temperature, K
T* dTb/dx, K/m
Ti temperature at x = 0, K
U average velocity, m/s
U average value of �u
u velocity, m/s
�u dimensionless velocity, �u ¼ lu=ðP �a2Þ
x axial coordinate, m
x̂ (x/a)/Pe
y, z coordinates, m
�y;�z y/a and z/a

Greek symbols

D vector with elements di

di elements of vector D
gj basis functions, Eq. (2b)
h dimensionless temperature
km eigenvalues
l fluid viscosity, N s/m2

le effective viscosity, N s/m2

n dimensionless coordinate
q fluid density, kg/m3

U transformed temperature, Eq. (16)
w eigenfunction
X vectors with element xi

xi elements of vector X

Subscripts

b bulk
i inlet condition
s source effect
w wall
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man–Brinkman’, proposed by Nield [6], refers to a problem
involving a saturated porous medium in which the Brink-
man momentum equation is used, and the thermal energy
equation includes a viscous dissipation term involving a
Brinkman number, which is the case here. It is also instruc-
tive to note that there are certain cases where one can
neglect the effects of viscous dissipation as highlighted by
Nield [6,7].

Regardless of the relative importance of the frictional
heating compared to other heat transfer mechanisms in a
system, there are some applications where one is willing
to inspect the viscous dissipation effects. In an analysis of
mantle flow, Bercovici [8] showed an example of the effects
of viscous dissipation in self-lubricating systems. On the
other hand, the recent work of Celata et al. [9] addresses
an interesting application of viscous dissipation in measur-
ing the fluid friction coefficient for flow in a micro-channel.
In another notable study, Murakami and Mikic [10] have
stated that even for flow of air, which has a relatively small
viscosity compared to common liquids, say water, through
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Fig. 1. A schematic of a rectangular passage with coordinates.
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a micro-channel one should consider the effects of viscous
dissipation when it comes to seek an optimum design
feature. Moreover, when it comes to entropy generation
minimization (EGM), which is a popular method of opti-
mization, one should have a clear insight of the viscous dis-
sipation as it emerges in the fluid friction term of entropy
generation [11].

The groundbreaking work by Bejan [11] introduced the
application of entropy generation due to heat and fluid
flow as a powerful tool to optimize variety of configura-
tions when analyzing engineering problems. Since entropy
generation destroys the available work of a system, it
makes good engineering sense to focus on entropy produc-
tion due to heat transfer and fluid flow processes to under-
stand the associated entropy generation mechanisms. The
literature on the topic is rich for flow through unobstructed
circular tubes or parallel plate channels. Similar work,
mostly restricted to the fully developed region, extended
the analysis to ducts of arbitrary cross-section [12,13], to
name a few.

On the other hand, modeling entropy generation in por-
ous media is comparatively harder than the clear fluid case
partly due to the increased number of variables present in
the governing equations. Another source of debate is the
different available models for viscous dissipation, that lead
to different fluid friction irreversibility (FFI) terms, as
noted earlier. Moreover, the complexity of the problem
becomes clearer when one observes that, numerical or the-
oretical, solutions addressing the second law analysis of
forced convection in porous ducts are mostly restricted to
circular tubes or parallel plate channels [14–17], where
the simplicity of the geometry allows analytical solution
of closed form. Thus the question naturally arises as to
whether analytical solutions, addressing heat transfer and
entropy generation, for more complicated cross-sections
are possible.

The method of weighted residuals was exploited by
Haji-Sheikh and Vafai [18] in their study of thermally
developing convection in ducts of various shapes. In a sub-
sequent study, Haji-Sheikh [19] has applied a Fourier series
method to investigate fully developed forced convection in
a duct of rectangular cross-section. Haji-Sheikh et al. [20–
24] have investigated heat transfer characteristics of the
thermal entrance region for flow through porous ducts
of arbitrary cross-sections. Applying the Fourier series
method, Hooman and Merrikh [25] have analytically inves-
tigated heat transfer and fluid flow in a rectangular duct
occupied by a hyperporous medium.

A quick look at [18–25] shows that none of these articles
reported the second law analysis. The work addressing this
issue is limited to those applying the Darcy flow model in
ducts of arbitrary cross-sections [26–28] with the exception
of [29]. Hooman et al. [29] have reported heat transfer and
entropy generation optimization in the fully developed
region of a rectangular duct for three cases of H1 boundary
condition in the terminology of Shah and London [30].
This study treats the more general case of a thermally
developing Brinkman–Brinkman problem in a duct of rect-
angular cross-section with walls held at a constant and uni-
form heat flux, i.e. the H2 case [30]. To the authors’
knowledge, not only there is no analytical solution avail-
able for the first law aspects of this problem but also the
present assessment of entropy generation for a thermally
developing Brinkman–Brinkman problem has not been
reported elsewhere.
2. Analysis

2.1. Fluid flow analysis

For a passage with a constant but arbitrarily shaped
cross-section, like the one depicted in Fig. 1, the Brinkman
momentum equation reads

le

o2u
oy2
þ o2u

oz2

� �
� l

K
u� op

ox
¼ 0: ð1Þ

Although an exact solution for fully developed velocity dis-
tribution is available, for convenience of symbolic manipu-
lation, the classical Galerkin method is used for
computation of velocity. It begins by setting

uðy; zÞ ¼
XN

j¼1

djgjðy; zÞ; ð2aÞ

where

gj ¼ ða2 � y2Þðb2 � z2Þy2ðmj�1Þz2ðnj�1Þ ð2bÞ

and dj coefficients are the constants to be determined. Next,
the substitution of u(y,z) from Eq. (2a) in momentum



Table 1
The parameter S*, for different b/a and MDa values, for determination of
U2;b ¼ S� � x̂
MDa b/a = 1 b/a = 2 b/a = 4 b/a = 10

0.0001 10202.9 10151.6 10126.3 10111.5
0.001 1066.07 1049.09 1040.81 1035.90
0.01 123.042 116.772 113.871 112.199
0.1 20.1833 16.9485 15.6872 15.0167
1 8.48230 5.70568 4.83563 4.42943
10 7.25128 4.50748 3.68970 3.32534
1 7.11354 4.37289 3.56109 3.20179
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equation, Eq. (1), and following the procedure in [31] leads
to

E � D ¼ X; ð3aÞ

with matrix E and vector X having elements

eij ¼
Z

A
½legiðy; zÞr2gjðy; zÞ � lgj=K�dA; ð3bÞ

and

xi ¼
op
ox

� �Z
A

giðy; zÞdA; ð3cÞ

where A is the cross-sectional area of the duct. Therefore,
the unknown coefficients are members of the vector
D = {d1,d2, . . .,dN} obtainable from D = E�1 � X. Once
the local velocity distribution is determined, the mean
velocity can be obtained as

U ¼ 1

A

Z
A

udA; ð4aÞ

and the normalized velocity is

û ¼ u
U
: ð4bÞ
Table 2a
The difference between the dimensionless wall temperature and bulk temperatu

x̂ MDa =1 MDa = 1

h1,w � h1,b U2,w � U2,b h1,w � h1,b

0.0005 0.0949 0.044 0.0928
0.0006 0.1012 0.049 0.0990
0.0008 0.1119 0.058 0.1095
0.001 0.1211 0.067 0.1184
0.002 0.1545 0.102 0.1512
0.003 0.1783 0.131 0.1745
0.004 0.1971 0.155 0.1930
0.005 0.2130 0.176 0.2086
0.006 0.2269 0.196 0.2223
0.008 0.2505 0.231 0.2454
0.01 0.2703 0.262 0.2649
0.02 0.3402 0.381 0.3337
0.03 0.3868 0.469 0.3796
0.04 0.4219 0.540 0.4143
0.05 0.4499 0.600 0.4420
0.06 0.4731 0.650 0.4649
0.08 0.5095 0.733 0.5010
0.1 0.5369 0.798 0.5280
0.2 0.608 0.974 0.5984
0.3 0.633 1.039 0.6231
0.4 0.6422 1.063 0.6322
0.5 0.6457 1.072 0.6356
0.6 0.6470 1.075 0.6369
0.8 0.6477 1.077 0.6376
1 0.6478 1.077 0.6377
2 0.6478 1.077 0.6377
3 0.6478 1.077 0.6377
4 0.6478 1.077 0.6377
5 0.6478 1.077 0.6377
2.2. Heat transfer analysis

2.2.1. Governing thermal energy equation

Under the local thermal equilibrium condition, the
energy equation, in its general form, for hydrodynamically
fully developed and incompressible flow is

ðqcpÞf u
oT
ox
¼ o

ox
ke

oT
ox

� �
þ o

oy
ke

oT
oy

� �
þ o

oz
ke

oT
oz

� �
þ Sðx; y; zÞ; ð5Þ

where S(x,y,z) includes the contribution of frictional heat-
ing and parameters (qcp)f and ke are the fluid thermal
re due to the wall effect and frictional heating contribution when b/a = 1

MDa = 1/10

U2,w � U2,b h1,w � h1,b U2,w � U2,b

0.046 0.0816 0.061
0.051 0.0870 0.068
0.061 0.0963 0.080
0.070 0.1043 0.090
0.106 0.1333 0.132
0.134 0.1540 0.163
0.159 0.1705 0.189
0.180 0.1844 0.212
0.200 0.1966 0.231
0.235 0.2174 0.265
0.265 0.2348 0.294
0.382 0.2969 0.397
0.468 0.3386 0.467
0.536 0.3703 0.519
0.592 0.3958 0.561
0.641 0.4169 0.596
0.719 0.4502 0.651
0.780 0.4753 0.692
0.947 0.5406 0.802
1.007 0.5632 0.840
1.029 0.5714 0.854
1.038 0.5744 0.859
1.041 0.5755 0.861
1.042 0.5760 0.862
1.043 0.5761 0.862
1.043 0.5761 0.862
1.043 0.5761 0.862
1.043 0.5761 0.862
1.043 0.5761 0.862
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capacity and the equivalent thermal conductivity, respec-
tively. When the contribution of axial conduction is negli-
gible, Eq. (5) reduces to

o

oy
ke

oT
oy

� �
þ o

oz
ke

oT
oz

� �
þ Sðy; z; xÞ ¼ ðqcpÞfu

oT
ox
: ð6Þ

The solution for Eq. (6) with a prescribed wall heat flux
and in the presence of frictional heating is possible as

T ðy; z; xÞ ¼
XN

m¼1

BmWmðy; zÞe�k2
mx; ð7aÞ

where

Wm ¼
XN

j¼1

dmjfjðy; zÞ: ð7bÞ

The following set of basis functions satisfies the homoge-
neous boundary condition of the second kind along the
walls,

fj¼ð1þðmj�1Þð1��y2ÞÞð1þðnj�1Þð1��z2=�b2ÞÞ�y2ðmj�1Þ�z2ðnj�1Þ;

ð8Þ

for all combinations of mj = 1,2, . . . and nj = 1,2, . . .. The
eigenvalues are k2

m and the coefficients dmj are the members
of eigenvectors dm; they are obtainable from the relation
Table 2b
The difference between the dimensionless wall temperature and bulk temperatu

x̂ MDa = 1/100 MDa = 1

h1,w � h1,b U2,w � U2,b h1,w � h1,b

0.0005 0.0609 0.132 0.0441
0.0006 0.0647 0.143 0.0471
0.0008 0.0714 0.162 0.0521
0.001 0.0773 0.177 0.0564
0.002 0.0991 0.234 0.0727
0.003 0.1146 0.272 0.0847
0.004 0.1271 0.300 0.0944
0.005 0.1376 0.322 0.1028
0.006 0.1469 0.341 0.1102
0.008 0.1627 0.370 0.1229
0.01 0.1761 0.392 0.1337
0.02 0.2240 0.459 0.1733
0.03 0.2565 0.494 0.2009
0.04 0.2814 0.517 0.2223
0.05 0.3016 0.533 0.2398
0.06 0.3185 0.546 0.2545
0.08 0.3453 0.564 0.2783
0.1 0.3658 0.577 0.2966
0.2 0.4197 0.608 0.3461
0.3 0.4383 0.618 0.3638
0.4 0.4448 0.622 0.3701
0.5 0.4471 0.623 0.3725
0.6 0.4479 0.624 0.3733
0.8 0.4483 0.624 0.3737
1 0.4484 0.624 0.3738
2 0.4484 0.624 0.3738
3 0.4484 0.624 0.3738
4 0.4484 0.624 0.3738
5 0.4484 0.624 0.3738
ðAþ k2
mBÞ � dm ¼ 0; ð9Þ

where the elements of the matrices A and B are

aij ¼ �
Z

A
kerfiðy; zÞ � rfjðy; zÞdA ð10aÞ

bij ¼
Z

A
qcpuðy; zÞfiðy; zÞfjðy; zÞdA: ð10bÞ

After determination of k2
m and dmj, the appropriate mathe-

matical steps in [32] provide the general solution. The
eigenvectors dm will constitute the rows of a matrix D.
When the boundary conditions are homogeneous and the
thermophysical properties are constant, the Green’s func-
tion solution is

T ðy; z; xÞ ¼ 1

qcp

Z x

n¼0

dn
Z

A
GSðy0; z0; nÞdA0

þ
Z

A
uðy0; z0ÞGðy; z; xjy0; z0; 0ÞT ðy 0; z0; 0ÞdA0;

ð11Þ

wherein the Green’s function is

Gðy; z; xjy0; z0; nÞ ¼
XN

m¼1

XN

i¼1

pmifiðy 0; z0Þ
" #

Wmðy; zÞe�k2
mðx�nÞ:

ð12Þ
re due to the wall effect and frictional heating contribution when b/a = 1

/1000 MDa = 1/10,000

U2,w � U2,b h1,w � h1,b U2,w � U2,b

0.132 0.0441 0.274
0.143 0.0471 0.292
0.162 0.0521 0.313
0.177 0.0564 0.325
0.234 0.0727 0.345
0.272 0.0847 0.354
0.300 0.0944 0.360
0.322 0.1028 0.364
0.341 0.1102 0.367
0.370 0.1229 0.371
0.392 0.1337 0.374
0.459 0.1733 0.381
0.494 0.2009 0.383
0.517 0.2223 0.385
0.533 0.2398 0.386
0.546 0.2545 0.386
0.564 0.2783 0.387
0.577 0.2966 0.388
0.608 0.3461 0.389
0.618 0.3638 0.389
0.622 0.3701 0.389
0.623 0.3725 0.389
0.624 0.3733 0.389
0.624 0.3737 0.389
0.624 0.3738 0.389
0.624 0.3738 0.389
0.624 0.3738 0.389
0.624 0.3738 0.389
0.624 0.3738 0.389
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The parameters pmi in Eq. (12) are members of the matrix
P = [(D � B)T]�1 (see Chapter 10 of [32] for more details).
In dimensionless space, the temperature solution in rectan-
gular passages takes the following form

T ð�y;�z; x̂Þ ¼ 1

qcp

Z x̂

n¼0

dn
Z �b

�z¼0

Z 1

�y¼0

Gð�y;�z; x̂j�y0;�z0;nÞSð�y0;�z0Þd�y 0d�z0

þ
Z �b

�z¼0

Z 1

�y¼0

uð�y0;�z0ÞGð�y;�z; x̂j�y 0;�z0;0ÞT ðy; z;0Þd�y 0d�z0

ð13Þ

wherein the Green’s function is

Gð�y;�z; x̂j�y0;�z0; nÞ ¼
XN

m¼1

XN

i¼1

pmifið�y0;�z0Þ
" #

Wmðy; zÞe�k2
mðx̂�nÞ

ð14Þ

and

Sð�y0;�z0Þ ¼ leU
2

qa
w

û2

MDa
þ oû

o�y0

� �2

þ oû
o�z0

� �2
" #

: ð15Þ

The next task is the computation of the temperature in the
entrance region of rectangular passages with locally con-
stant wall heat flux qw. For the EWRM, the boundary con-
ditions should be homogeneous. Therefore, the following
Table 3a
The difference between the dimensionless wall temperature and bulk temperatu

x̂ MDa =1 MDa = 1

h1,w � h1,b U2,w � U2,b h1,w � h1,b

0.0005 0.0995 0.034 0.0964
0.0006 0.1059 0.038 0.1027
0.0008 0.1170 0.045 0.1134
0.001 0.1264 0.052 0.1224
0.002 0.1611 0.080 0.1558
0.003 0.1855 0.103 0.1795
0.004 0.2051 0.122 0.1985
0.005 0.2218 0.139 0.2145
0.006 0.2363 0.155 0.2286
0.008 0.2610 0.182 0.2526
0.01 0.2819 0.207 0.2728
0.02 0.3564 0.303 0.3452
0.03 0.4071 0.374 0.3946
0.04 0.4463 0.432 0.4327
0.05 0.4783 0.480 0.4638
0.06 0.5054 0.522 0.4902
0.08 0.5495 0.591 0.5331
0.1 0.5845 0.646 0.5671
0.2 0.6922 0.808 0.6713
0.3 0.7496 0.883 0.7264
0.4 0.7860 0.925 0.7610
0.5 0.8110 0.951 0.7848
0.6 0.8291 0.968 0.8020
0.8 0.8524 0.990 0.8243
1 0.8656 1.003 0.8369
2 0.8822 1.018 0.8529
3 0.8832 1.019 0.8539
4 0.8832 1.019 0.8539
5 0.8832 1.019 0.8539
temperature transformation, in the dimensionless form, is
being used for insertion into the energy equation,

hð�y;�z; x̂Þ ¼ T ðy; z; xÞ � T i

qwa=ke

¼ Uð�y;�z; x̂Þ þ �y2

2
þ �z2

2�b
; ð16Þ

where qw = keoT/oyjy=a = keoT/ozjz=b is the input heat
flux. After substituting for T from this transformation in
Eq. (16), the function Uð�y;�z; x̂Þ must satisfy the following
equation

o2U
o�y2
þ o2U

o�z2
þ leU

2

qwa
û2

MDa
þ oû

o�y

� �2

þ oû
o�z

� �2
" #

þ
�bþ 1

�b

¼ u
U

� � oU
ox̂
: ð17Þ

Now, the new function Uð�y;�z; x̂Þ satisfies the boundary
conditions oU=o�yj�y¼0 ¼ oU=o�yj�y¼1 ¼ 0; oU=o�zj�z¼0 ¼ oU=
o�zj�z¼�b ¼ 0 and the entrance condition Uð�y;�z; 0Þ ¼
�ð�y2 þ �z2=�bÞ=2.

The equation for Uð�y;�z; x̂Þ contains a heat source expres-
sion that results from viscous dissipation in a porous med-
ium modeled by the Brinkman equation, in the form
recommended in [4]. Also it contains an additional source
term that emerged following the transformation. This
suggests a development of two separate solutions; first,
U1ð�y;�z; x̂Þ by neglecting the contribution of viscous
dissipation and using the quantity ð�bþ 1Þ=�b as the only
re due to the wall effect and frictional heating contribution when b/a = 2

MDa = 1/10

U2,w � U2,b h1,w � h1,b U2,w � U2,b

0.037 0.0819 0.054
0.041 0.0875 0.060
0.049 0.0968 0.070
0.056 0.1046 0.080
0.085 0.1329 0.116
0.108 0.1532 0.143
0.128 0.1695 0.165
0.145 0.1834 0.185
0.161 0.1955 0.202
0.189 0.2161 0.231
0.214 0.2335 0.256
0.309 0.2963 0.344
0.378 0.3392 0.402
0.433 0.3724 0.446
0.479 0.3996 0.481
0.519 0.4227 0.510
0.584 0.4602 0.555
0.635 0.4898 0.590
0.784 0.5792 0.683
0.852 0.6248 0.722
0.888 0.6527 0.740
0.911 0.6717 0.751
0.926 0.6855 0.758
0.945 0.7033 0.766
0.955 0.7136 0.771
0.969 0.7270 0.777
0.969 0.7279 0.778
0.970 0.7280 0.778
0.970 0.7280 0.778
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contribution for the wall effect. The second solution
U2ð�y;�z; x̂Þ is to use S(y0,z0,n) in the Green’s function solu-
tion for the frictional contribution and this makes
Uð�y;�z; x̂Þ ¼ U1ð�y;�z; x̂Þþ BrU2ð�y;�z; x̂Þ with Br = leU

2/(qwa).
Splitting Eq. (13) into two equations; the first contribution
is

U1ð�y;�z; x̂Þ¼
Z x̂

n¼0

dn
Z �b

�z¼0

Z 1

�y¼0

Gð�y;�z; x̂j�y 0;�z0;nÞ 1þ�b
�b

� �
d�y0d�z0

�
Z �b

�z¼0

Z 1

�y¼0

uð�y0;�z0ÞGð�y;�z; x̂j�y0;�z0;0Þ �y2

2
þ �z2

2�b

� �
d�y 0d�z0

ð18Þ

and the second one is

U2ð�y;�z; x̂Þ ¼
Z x̂

n¼0

dn
Z �b

�z¼0

Z 1

�y¼0

Gð�y;�z; x̂j�y 0;�z0; nÞ
"

û2

MDa

þ oû
o�y0

� �2

þ oû
o�z0

� �2
#

d�y0 d�z0 ð19Þ

wherein the Green’s function is defined by Eq. (14).
This form of the Green’s function contains the basis

functions fið�y0;�z0Þ, eigenfunctions Wmð�y;�zÞ, parameters
Pmi, and eigenvalues k2

m. The second contribution, follow-
ing substitution for the Green’s function, attains a standard
form,
Table 3b
The difference between the dimensionless wall temperature and bulk temperatu

x̂ MDa = 1/100 MDa = 1

h1,w � h1,b U2,w � U2,b h1,w � h1,b

0.0005 0.0591 0.123 0.0423
0.0006 0.0633 0.134 0.0454
0.0008 0.0706 0.154 0.0508
0.001 0.0767 0.169 0.0554
0.002 0.0983 0.223 0.0726
0.003 0.1133 0.258 0.0848
0.004 0.1254 0.285 0.0945
0.005 0.1358 0.305 0.1028
0.006 0.1450 0.323 0.1101
0.008 0.1607 0.350 0.1229
0.01 0.1740 0.370 0.1339
0.02 0.2222 0.432 0.1747
0.03 0.2556 0.464 0.2036
0.04 0.2816 0.485 0.2264
0.05 0.3031 0.500 0.2454
0.06 0.3214 0.511 0.2617
0.08 0.3513 0.528 0.2887
0.1 0.3751 0.539 0.3103
0.2 0.4472 0.568 0.3767
0.3 0.4833 0.578 0.4103
0.4 0.5050 0.583 0.4304
0.5 0.5196 0.586 0.4438
0.6 0.5301 0.587 0.4535
0.8 0.5440 0.589 0.4663
1 0.5522 0.590 0.4739
2 0.5633 0.592 0.4845
3 0.5642 0.592 0.4854
4 0.5642 0.592 0.4854
5 0.5642 0.592 0.4854
U2ð�y;�z; x̂Þ ¼
XN

m¼1

AmWmð�y;�zÞ
1� e�k2

mx̂

k2
m

; ð20Þ

where

Am¼
XN

i¼1

pmi

Z �b

�z¼0

Z 1

�y¼0

û2

MDa
þ oû

o�y0

� �2

þ oû
o�z0

� �2
" #

fið�y 0;�z0Þd�y 0d�z0:

ð21Þ

It is to be noted that as x̂ becomes large, the solution for U2

approaches that for the quasi thermally fully developed
solution U2,FD. Therefore, the solution using equation

U2ð�y;�z; x̂Þ ¼ U2;FD �
XN

m¼1

AmWmð�y;�zÞ
e�k2

mx̂

k2
m

ð22Þ

exhibits better convergence characteristics. The solution for
U2,FD uses the Poisson’s equation

o2U2;FD

o�y2
þ o2U2;FD

o�z2
þBr

û2

MDa
þ oû

o�y

� �2

þ oû
o�z

� �2
" #

� S�û¼ 0;

ð23aÞ

where

S� ¼
Z �b

�z¼0

Z 1

�y¼0

û2

MDa
þ oû

o�y0

� �2

þ oû
o�z0

� �2
" #

d�y0 d�z0 ð23bÞ
re due to the wall effect and frictional heating contribution when b/a = 2

/1000 MDa = 1/10,000

U2,w � U2,b h1,w � h1,b U2,w � U2,b

0.252 0.0334 0.285
0.269 0.0361 0.296
0.295 0.0407 0.312
0.314 0.0446 0.324
0.366 0.0595 0.352
0.391 0.0703 0.362
0.408 0.0792 0.367
0.420 0.0868 0.370
0.429 0.0937 0.372
0.442 0.1057 0.376
0.452 0.1161 0.378
0.475 0.1550 0.382
0.486 0.1829 0.383
0.492 0.2050 0.384
0.496 0.2235 0.384
0.500 0.2394 0.383
0.504 0.2657 0.383
0.507 0.2869 0.382
0.515 0.3522 0.380
0.517 0.3853 0.378
0.519 0.4051 0.377
0.519 0.4182 0.376
0.520 0.4277 0.375
0.520 0.4402 0.374
0.521 0.4476 0.374
0.521 0.4582 0.373
0.521 0.459 0.373
0.521 0.4591 0.373
0.521 0.4591 0.373
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and it is obtainable by different methods. Since symbolic
algebra is being used, it is determined by the classical
Galerkin method [31]. Alternatively, a known U2,FD solu-
tion leads to an initial value problem similar to that used
to obtain U1 instead of the second term on the right side
of Eq. (22).

Once the functions U1ð�y;�z; x̂Þ and U2ð�y;�z; x̂Þ are known,
the temperature solution hð�y;�z; x̂Þ is available. Accordingly,
for convenience of this presentation, the two contributions
of the dimensionless temperature hð�y;�z; x̂Þ ¼ h1ð�y;�z; x̂Þþ
h2ð�y;�z; x̂Þ are presented separately; that is,

h1ð�y;�z; x̂Þ ¼ �y2

2
þ �z2

2�b
þ U1ð�y;�z; x̂Þ ð24Þ
and

h2ð�y;�z; x̂Þ ¼ BrU2ð�y;�z; x̂Þ: ð25Þ
Therefore, for i = 1 or 2, the following equation provides
the mean wall temperature for each contribution,

hi;wðx̂Þ ¼
1

1þ �b

Z 1

�y¼0

hið�y; �b; x̂Þd�y þ
Z �b

�z¼0

hið1;�z; x̂Þd�z

" #
ð26Þ
Table 4a
The difference between the dimensionless wall temperature and bulk temperatu

x̂ MDa =1 MDa = 1

h1,w � h1,b U2,w � U2,b h1,w � h1,b

0.0005 0.0936 0.033 0.0902
0.0006 0.1002 0.037 0.0965
0.0008 0.1114 0.044 0.1073
0.001 0.1209 0.051 0.1165
0.002 0.1551 0.079 0.1497
0.003 0.1786 0.101 0.1726
0.004 0.1970 0.119 0.1904
0.005 0.2125 0.136 0.2054
0.006 0.2260 0.151 0.2184
0.008 0.2490 0.178 0.2407
0.01 0.2684 0.202 0.2594
0.02 0.3377 0.293 0.3266
0.03 0.3849 0.360 0.3723
0.04 0.4214 0.414 0.4075
0.05 0.4512 0.459 0.4364
0.06 0.4765 0.497 0.4608
0.08 0.5177 0.558 0.5006
0.1 0.5505 0.606 0.5321
0.2 0.6530 0.737 0.6295
0.3 0.7109 0.790 0.6834
0.4 0.7513 0.815 0.7205
0.5 0.7830 0.829 0.7493
0.6 0.8096 0.839 0.7734
0.8 0.8528 0.853 0.8125
1 0.8873 0.863 0.8437
2 0.9921 0.890 0.9385
3 1.0416 0.901 0.9836
4 1.0663 0.907 1.0063
5 1.0787 0.910 1.0177
2.3. Second law analysis

Cross-sectional average of the entropy generation rate
_Sgen can be found as [12]

d _Sgen ¼ _mds� dQ
T w

: ð27Þ

Noting that the longitudinal pressure gradient is constant,
� dP

dx ¼ P �, with ds ¼ cp
dT b

T b
� dP

qT b
and dQ = qwCdx, and

after some algebraic manipulations one has

d _Sgen

_mcp

¼ dT b

dx
dx
T b

� P � dx
qcpT b

� qwC dx
_mcpT w

: ð28Þ

On the other hand, the first law of thermodynamics for an
element reads

dT b

dx
¼ 4qwð1þ �bÞa3 þ leU

2S � A
_mcpa2

¼ T �; ð29Þ

where T* is a constant (longitudinal bulk temperature gra-
dient). Solving for the bulk temperature, one has

T b ¼ T �xþ T i: ð30Þ

Making use of the above equation in the entropy produc-
tion formula, Eq. (28), one concludes
re due to the wall effect and frictional heating contribution when b/a = 4

MDa = 1/10

U2,w � U2,b h1,w � h1,b U2,w � U2,b

0.035 0.0767 0.050
0.040 0.0819 0.056
0.047 0.0910 0.067
0.055 0.0988 0.076
0.083 0.1276 0.113
0.106 0.1478 0.140
0.125 0.1636 0.162
0.141 0.1767 0.180
0.157 0.1881 0.197
0.184 0.2074 0.225
0.208 0.2236 0.248
0.298 0.2819 0.333
0.364 0.3218 0.389
0.416 0.3525 0.430
0.459 0.3777 0.463
0.495 0.3990 0.490
0.553 0.4336 0.533
0.599 0.4609 0.565
0.722 0.5429 0.648
0.770 0.5853 0.678
0.792 0.6130 0.691
0.804 0.6341 0.697
0.813 0.6514 0.701
0.824 0.6793 0.706
0.832 0.7016 0.710
0.853 0.7702 0.718
0.863 0.8035 0.721
0.867 0.8207 0.723
0.869 0.8296 0.724
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d _Sgen

_mcp

¼ dx
xþ T i=T �

þ P �

qcpT �
dx

xþ T i=T �
� qwC dx

_mcpT w

: ð31Þ

As the wall temperature is not explicitly defined in terms of
the known variables, one replaces it by the dimensionless
variable counterpart hw = (Tw � Ti)/(qwa/ke) where, in
terms of the tabulated data, one has

T w ¼ T i þ ðh1w þ BrU1wÞqwa=ke ð32Þ

leading to

d _Sgen

_mcp

¼ dx
xþT i=T �

þF
dx

xþT i=T �
� q00C

_mcpT i

dx
1þðh1wþBrU1wÞq�

ð33Þ

with the dimensionless wall heat flux being defined as
q* = qwa/(keTi). Moreover, the dimensionless parameter
F = P*/(qcpT*) is a measure of required pumping power
to enthalpy change (longitudinal heat transfer). For non-
zero Br values and in terms of the Darcy pressure drop
one concludes that

F ¼ N �
Br

MDa
4a
DH

þ BrS�
� ��

; ð34Þ

where N* shows the degree of non-Darcy effects on the lon-
gitudinal pressure gradient as N* = P*/(lU/K). For the
Darcy flow model N* = 1. Integrating from x = 0 to
Table 4b
The difference between the dimensionless wall temperature and bulk temperatu

x̂ MDa = 1/100 MDa = 1

h1,w � h1,b U2,w � U2,b h1,w � h1,b

0.0005 0.0575 0.113 0.0434
0.0006 0.0610 0.124 0.0462
0.0008 0.0673 0.143 0.0508
0.001 0.0728 0.160 0.0549
0.002 0.0941 0.218 0.0709
0.003 0.1095 0.254 0.0831
0.004 0.122 0.281 0.0931
0.005 0.1324 0.301 0.1017
0.006 0.1415 0.318 0.1093
0.008 0.1569 0.344 0.1223
0.01 0.1697 0.364 0.1333
0.02 0.2155 0.423 0.1732
0.03 0.2473 0.454 0.2012
0.04 0.2721 0.474 0.2235
0.05 0.2926 0.489 0.2420
0.06 0.3100 0.500 0.2579
0.08 0.3384 0.515 0.2842
0.1 0.3609 0.527 0.3052
0.2 0.4287 0.553 0.3692
0.3 0.4628 0.563 0.4014
0.4 0.4842 0.567 0.4212
0.5 0.4999 0.569 0.4356
0.6 0.5126 0.570 0.4471
0.8 0.5332 0.571 0.4655
1 0.5497 0.572 0.4802
2 0.6010 0.573 0.5263
3 0.6266 0.574 0.5495
4 0.6401 0.575 0.5618
5 0.6473 0.575 0.5684
x = L and rearranging in terms of known parameters,
one has

N s ¼
_SgenðLÞ

_mcp

ln 1þ q�bL 4a
Dh

þ BrS�
� �� �1þF

� q�
4a
Dh

Z bL
0

dx̂
1þ ðh1w þ BrU1wÞq�

: ð35aÞ

As seen, like the left-hand side term the first two terms in
the right-hand side of Eq. (33) are integrated directly; how-
ever, the last term on the right side should be evaluated
numerically. Before reporting the numerical results, which
are obtained using the trapezoidal rule, two limiting cases,
for which approximate closed form solutions are obtained,
will be presented. It is assumed that the dimensionless heat
flux q* is very small compared to unity. Commensurate
with that is the constant property assumption similar to
[29]. First consider the case of a hyperporous medium for
which one has MDa = O(1). A quick check of Table 1
shows that for this case S* = O(1) so that neglecting the
terms smaller that O(q*), like q�

2
, one finds that

N s ¼ q�bL½F ð1þ �bÞ=�bþ BrS�ð1þ F Þ�: ð35bÞ

Replacing F, one has

N s ¼ q�bLBr½S� þ N=ðMDaÞ�: ð35cÞ
re due to the wall effect and frictional heating contribution when b/a = 4

/1000 MDa = 1/10,000

U2,w � U2,b h1,w � h1,b U2,w � U2,b

0.225 0.0344 0.328
0.237 0.0368 0.337
0.257 0.0410 0.352
0.273 0.0447 0.363
0.326 0.0593 0.393
0.356 0.0705 0.405
0.377 0.0798 0.412
0.391 0.0877 0.416
0.402 0.0948 0.419
0.418 0.1069 0.423
0.428 0.1173 0.426
0.452 0.1556 0.433
0.462 0.1831 0.437
0.468 0.2050 0.438
0.473 0.2232 0.440
0.476 0.2389 0.440
0.480 0.2649 0.442
0.483 0.2857 0.442
0.491 0.3493 0.444
0.494 0.3814 0.445
0.495 0.4011 0.445
0.495 0.4152 0.445
0.495 0.4264 0.445
0.496 0.4443 0.445
0.496 0.4586 0.445
0.497 0.5035 0.445
0.497 0.5261 0.444
0.497 0.5381 0.444
0.497 0.5446 0.444
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Comparing the predictions of the above equation and the
numerically obtained results, a good degree of agreement
is observed. For example with b/a = 1, N* = 0.1, and
MDa = 1, Eq. (35c) predicts Ns = 0.4291 and 0.0429 while
the numerical results are 0.3435 and 0.0418 for q* = 0.01
and 0.001, respectively. The results agree better for smaller
q* values, as expected based on our asymptotic analysis
assumptions.

It is instructive to rearrange Eq. (35c) in terms of dimen-
sional variables as

_Sgen ¼ AL
leU

2

a2T i

S� þ N
MDa

� �
: ð35dÞ

Based on the Table 1 results, S* decreases with the aspect
ratio so that, as shown by Eq. (35d), the square cross-sec-
tion is associated with the highest entropy generation rate
compared to rectangular counterparts.

Another case of interest is the one for which MDa ? 0
where even for relatively small q* one can still expect that
the product of Brq*S* will be notably greater than O(1)
so that the second term in the right side of Eq. (35a) is neg-
ligible compared to the first one; a term that can be simpli-
fied in such a way that Ns be obtained as

N s ¼ 1þ N
MDaS�

� �
ln

leU
qcpT ia

L
a

S�
� �

ð35eÞ
Table 5a
The difference between the dimensionless wall temperature and bulk temperatu

x̂ MDa =1 MDa = 1

h1,w � h1,b U2,w � U2,b h1,w � h1,b

0.0005 0.0893 0.028 0.0878
0.0006 0.0947 0.032 0.0930
0.0008 0.1041 0.039 0.1020
0.001 0.1122 0.045 0.1096
0.002 0.1420 0.072 0.1379
0.003 0.1633 0.094 0.1582
0.004 0.1803 0.115 0.1745
0.005 0.1948 0.134 0.1883
0.006 0.2074 0.151 0.2004
0.008 0.2287 0.182 0.2211
0.01 0.2465 0.210 0.2385
0.02 0.3087 0.311 0.2999
0.03 0.3498 0.379 0.3407
0.04 0.3809 0.431 0.3713
0.05 0.4061 0.473 0.3960
0.06 0.4272 0.509 0.4166
0.08 0.4612 0.565 0.4495
0.1 0.4877 0.609 0.4751
0.2 0.5651 0.725 0.5492
0.3 0.6039 0.765 0.5853
0.4 0.6292 0.781 0.6084
0.5 0.6490 0.788 0.6262
0.6 0.6658 0.792 0.6412
0.8 0.6944 0.798 0.6666
1 0.7188 0.801 0.6882
2 0.8082 0.811 0.7673
3 0.8703 0.815 0.8223
4 0.9185 0.818 0.8649
5 0.9579 0.820 0.8997
similar to the previous case, Eq. (35e) has been verified ver-
sus numerical counterparts for MDa = 10�4 and N* = 1
with the other parameters remaining the same. The numer-
ical results are Ns = 12.249, 7.814 while approximate coun-
terparts are 12.344 and 7.785 for q* = 0.01 and 0.001,
respectively.
3. Results and discussion

In the absence of frictional heating contribution, under
the constant wall heat flux condition, the energy balance
leads to a relation for the bulk temperature,

h1;b ¼ ð1þ �bÞx̂=�b: ð36aÞ

The bulk temperature is also obtainable analytically with
hð�y;�z; x̂Þ from Eq. (16). This was done mainly for the veri-
fication of the mathematical relations for the temperature
solution. Similarly, the application of energy balance to a
material element yields the relation

U2;b ¼ S�x̂ ð36bÞ

and S* values for selected values of b/a and MDa values are
in Table 1.

If one designates hw = (Tw � Ti)/(qwa/ke) and hb = (Tb �
Ti)/(qwa/ke), the Nusselt number is obtainable from the
relation Nu = ha/ke = 1/(hw � hb) and then using the
re due to the wall effect and frictional heating contribution when b/a = 10

MDa = 1/10

U2,w � U2,b h1,w � h1,b U2,w � U2,b

0.035 0.0779 0.050
0.039 0.0824 0.055
0.047 0.0902 0.065
0.054 0.0969 0.074
0.083 0.1215 0.109
0.106 0.1391 0.135
0.125 0.1533 0.157
0.143 0.1654 0.176
0.158 0.1759 0.193
0.186 0.1941 0.221
0.211 0.2094 0.246
0.303 0.2643 0.332
0.369 0.3012 0.388
0.420 0.3291 0.429
0.462 0.3515 0.462
0.498 0.3702 0.488
0.555 0.4000 0.529
0.598 0.4229 0.560
0.709 0.4880 0.638
0.746 0.5176 0.664
0.761 0.5351 0.673
0.767 0.5479 0.677
0.771 0.5584 0.679
0.775 0.5761 0.682
0.778 0.5911 0.683
0.786 0.6459 0.686
0.790 0.6841 0.688
0.792 0.7139 0.689
0.794 0.7383 0.689
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hydraulic diameter Dh = 4ab/(a + b) in the definition, the
Nusselt number becomes

NuD ¼
Dh

a
Nu ¼ 4�b

1þ �b
1

hw � hb

� �
¼ 4�b

1þ �b
1

ðh1;w � h1;bÞ þ BrðU2;w � U2;bÞ

� �
: ð37Þ

The values of NuD can be determined from tabulated
(h1,w � h1,b) and (U2,w � U2,b) data in Tables 2a,b to 5a,b,
at different x̂ ¼ ðx=aÞ=Pe, b/a, MDa, and Br values which
can be positive or negative depending on the direction of
heat flux.

The data for U2,w � U2,b can also identify the values of
the wall temperature in the absence of heating or cooling
at the walls where viscous dissipation is the only reason
for heat transfer as discussed by Hooman et al. [24] for a
similar problem with isothermal wall heating. In this case
the energy generated inside the duct should be carried by
the moving fluid leading to an increase in the fluid
enthalpy. For this case one obtains the wall and bulk tem-
perature as

T wðy; z; xÞ � T i

leU
2=ke

¼ U2;wð�y;�z; x̂Þ; ð38aÞ

T bðy; z; xÞ � T i

leU
2=ke

¼ U2;bð�y;�z; x̂Þ ¼ S�x̂: ð38bÞ
Table 5b
The difference between the dimensionless wall temperature and bulk temperatu

x̂ MDa = 1/100 MDa = 1

h1,w � h1,b U2,w � U2,b h1,w � h1,b

0.0005 0.0594 0.112 0.0455
0.0006 0.0628 0.122 0.0481
0.0008 0.0689 0.140 0.0527
0.001 0.0740 0.154 0.0567
0.002 0.0932 0.206 0.0720
0.003 0.1070 0.239 0.0832
0.004 0.1182 0.265 0.0925
0.005 0.1277 0.285 0.1005
0.006 0.1361 0.302 0.1076
0.008 0.1506 0.329 0.1200
0.01 0.1629 0.350 0.1307
0.02 0.2076 0.413 0.1703
0.03 0.2381 0.445 0.1980
0.04 0.2614 0.466 0.2197
0.05 0.2803 0.480 0.2374
0.06 0.2962 0.491 0.2524
0.08 0.3219 0.506 0.2769
0.1 0.3418 0.517 0.2961
0.2 0.3990 0.543 0.3521
0.3 0.4245 0.552 0.3774
0.4 0.4388 0.555 0.3914
0.5 0.4486 0.556 0.4007
0.6 0.4564 0.557 0.4080
0.8 0.4693 0.558 0.4198
1 0.4803 0.558 0.4297
2 0.5205 0.559 0.4661
3 0.5487 0.559 0.4918
4 0.5708 0.559 0.5118
5 0.5889 0.559 0.5283
One notes that the temperature scale is leU
2/ke for this case

as there is no wall heat flux to be included in the denomi-
nator. The data in Tables 2a,b to 5a,b can be used to illus-
trate the wall–bulk temperature difference U2,w � U2,b. This
has been done for some cases as shown in Fig. 2a–d for
b/a = 1, 2, 4, and 10 where the variations of the wall tem-
perature h1,w and the bulk temperature h1,b are graphically
presented in [21] for the same aspect ratios. As a common
trend in all charts on Fig. 2a–d, one observes that
U2,w � U2,b increases along the duct. However, with
MDa > 0.1 the curve experiences a turning point while
for smaller values of MDa there is a sharp increase in
U2,w � U2,b.

For a more comprehensive analysis of the problem, one
can use the data presented in Tables 1–5 to find the Nusselt
number for any arbitrary combination of the key parame-
ters. As an illustration, this is partly done and the results
are in Figs. 3 and 4. Fig. 3a shows the developing Nusselt
number for MDa = 0.001 versus x̂ for several values of Br.
It is clear that increasing Br will reduce the Nusselt number
level. Moreover, increasing Br and aspect ratio, the NuD

versus x̂ plots tend to be more flattened. The square
cross-section seems to behave differently for higher Br val-
ues in such a way that the developing Nusselt number is as
high as that of other aspect ratios in the duct entrance and
then decreases sharply with the fully developed NuD being
the minimum among the other counterparts. It is interest-
re due to the wall effect and frictional heating contribution when b/a = 10

/1000 MDa = 1/10,000

U2,w � U2,b h1,w � h1,b U2,w � U2,b

0.244 0.0371 0.313
0.256 0.0394 0.325
0.275 0.0434 0.341
0.290 0.0469 0.353
0.335 0.0605 0.378
0.360 0.0709 0.387
0.376 0.0796 0.392
0.387 0.0872 0.396
0.396 0.0940 0.399
0.409 0.1059 0.402
0.418 0.1162 0.405
0.443 0.1549 0.411
0.455 0.1823 0.413
0.463 0.2038 0.414
0.468 0.2215 0.414
0.471 0.2365 0.414
0.476 0.2609 0.414
0.479 0.2802 0.415
0.487 0.3367 0.415
0.489 0.3624 0.415
0.490 0.3766 0.415
0.491 0.3860 0.415
0.491 0.3932 0.415
0.491 0.4049 0.415
0.491 0.4147 0.415
0.491 0.4507 0.415
0.492 0.4761 0.415
0.492 0.4959 0.415
0.492 0.5122 0.415
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Fig. 2. The effects of frictional heating on the wall–bulk temperature
difference for different MDa values in the absence of wall heat flux, when
(a) b/a = 1, (b) b/a = 2, (c) b/a = 4, and (d) b/a = 10.
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Fig. 3. NuD versus (x/a)/Pe for different Br and aspect ratio values, (a)
when MDa = 0.001 and (b) when MDa = 1.
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ing that in their study of heat transfer and entropy genera-
tion in a duct of rectangular cross-section with the fully
developed assumption, Hooman et al. [29] have reported
that the square cross-section acts in a different manner
for very small MDa values where the velocity profile is
nearly slug and the problem is a conduction-like one. They
attributed this fact (in part) to the special geometry of a
square for having more symmetry compared to rectangular
counterparts. Fig. 3b shows NuD versus longitudinal coor-
dinate for different Br values with MDa = 1 which repre-
sents a hyperporous medium. It can be concluded that
for a fixed Br value NuD increases with the aspect ratio
for all cases considered here.

Fig. 4a and b presents the fully developed NuD versus Br
for two limiting aspect ratios being b/a = 1 and 10. One
realizes that the hyperporous case, with MDa = 1, mimics
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the clear fluid counterpart as the corresponding curves are
nearly identical but moving from MDa = 0.0001 to 0.001,
changes in the Nusselt number are more pronounced com-
pared to the former case. In line with the aforementioned
observations increasing Br or decreasing MDa will decrease
the Nusselt number for either values of the duct aspect
ratio. Moreover, the Nusselt number puts higher values
for smaller aspect ratio compared to the higher one. Nev-
ertheless, it should be noted that, for small Br values, selec-
tion of a length scale in the Nusselt number (hydraulic
diameter) is partly responsible for that similar to what
was reported by [29]. Interestingly, moving to higher Br

values, this choice becomes of less importance.
For a better understanding of the problem, Eq. (37) is
rearranged in terms of the Nusselt number for negligible
viscous dissipation case, Nu*, as follows

NuD ¼
4�b

1þ �b
1

Nu�
þ BrðU2;w � U2;bÞ

� ��1

: ð39Þ

Eq. (39) is identical to the form reported by Kakac� et al.
[33] for clear flow through a pipe and also by Hooman
and Gurgenci [34] for a parallel plate porous channel (see
[35–37] for more closed form solutions for similar prob-
lems), if rearranged as follows

NuD ¼
4�b

1þ �b
Nu�

1þ Nu�BrðU2;w � U2;bÞ

� �
: ð40Þ

It is an easy task to see that increasing Br decreases NuD

where Nu* is the Nusselt number for the case where one
can neglect the viscous dissipation effects. Eq. (40) can be
modified to be used for ducts of other cross-sections. The
significance of this point becomes more vivid as one can ap-
ply Eq. (40) to account for the viscous dissipation effects,
for the fully developed or thermally developing region, by
combining two easier problems, with their answers avail-
able in the literature, to obtain the solution to a more com-
plex problem. For example one can use the correlations
proposed by Haji-Sheikh [38] to find Nu* for parallel plate
channels or circular tubes and solve only for the second
part to obtain the final solution for a problem where fric-
tional heating is important. This seems to be of practical
importance in engineering applications where usually one
is in search for a rough and ready estimate rather than
complicated calculations.

It is worth noting that several combinations of the key
parameters can lead to different results, based on the data
in Tables 2–5; however, for the sake of brevity, we restrict
our results for the second law aspects of the problem to the
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most irreversible geometry being the square cross-section
(see [11–13,29]). Fig. 5 illustrates plots of Ns versus Br

for two different values of MDa being 1 and 10�4. As seen,
with the other parameters fixed, decreasing MDa or
increasing either of Br or q* increases the entropy produc-
tion rate. This is in line with the results of Hooman et al.
[29]. Moving from MDa = 1 to 10�4, the Ns–Br slope
changes as expected based on the approximate predictions
of Eqs. (35d) and (35e).

4. Conclusion

The effect of viscous dissipation on heat transfer and
entropy generation for thermally developing forced convec-
tion in a porous-saturated duct of rectangular cross-section
is investigated. The classical Galerkin method is applied to
solve the Brinkman momentum equation while the EWRM
is undertaken to solve the non-homogenous three-dimen-
sional thermal energy equation. It is believed that the solu-
tion reported in this study can serve as a benchmark for
verification of numerical solutions concerning similar prob-
lems for example those addressed by [39–46]. It was
observed that viscous dissipation reduces the Nusselt num-
ber in both thermally developing and fully developed
regions unlike the similar case with isothermal wall heating.
Key parameters affecting the second law aspects of the
problem are highlighted and analyzed.
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